CHOLIC ACID - AN ATTRACTIVE SOURCE FOR THE PREPARATION OF 5β -PREGNANE-3,20-DIONE, 3α -HYDROXY-5 β -PREGNAN-20-ONE AND PROGESTERONE

G. Hilgers, H.-D. Scharf

RWTH Aachen, Inst. f. Organische Chemie, Prof.-Pirlet-Str. 1, D-5100 Aachen, Germany

<u>Abstract:</u> An efficient synthesis of 5β -pregnane-3,20-dione ($\underline{5}$), progesterone and 3α -hydroxy- 5β -pregnan-20-one ($\underline{11}$) from cholic acid ($\underline{1}$) is presented.

 5β -Pregnane-3,20-dione ($\underline{5}$) as well as 3α -hydroxy- 5β -pregnan-20-one ($\underline{11}$) has been reported to be of pharmaceutical value as hypnotic-anaesthetic agent $\overline{1,2}$. Additionally both products reveal high anticonvulsive activity³) and counteract androgen-induced defeminization²). Preparation and indication of the female sex hormone progesterone are well known either.

Older processes⁴⁻⁶⁾ for preparing $\underline{5}$ and $\underline{11}$ on the basis of bile acids are relatively complicated and uneconomical. It is known that 5β -pregnane-3,20-dione ($\underline{5}$) as well as 3α -hydroxy- 5β -pregnan-20-one ($\underline{11}$) can be obtained from progesterone by selective hydrogenation⁷⁾. But especially yields for $\underline{11}$ (from progesterone via $\underline{5}$) are not satisfying. Additionally in 1980 D. Onken⁸⁾ reported on a shortage of diosgenin, the most essential source for the technical preparation of progesterone⁹⁾.

Now we herein describe a new method for preparing 5ß-pregnane-3,20-dione ($\underline{5}$) and 3α -hydroxy-5ß-pregnan-20-one ($\underline{11}$) from cholic acid ($\underline{1}$), an attractive starting material because of its easy supply from cow bile. The key step of our synthesis is the photochemical side chain degradation of suitable bile acid derivatives ($\underline{3} \rightarrow \underline{4}$; $\underline{7} \rightarrow \underline{9}$; $\underline{8} \rightarrow \underline{10}$).

 5β -Pregnane-3,20-dione ($\underline{5}$) was prepared as follows. For isolation of cholic acid ($\underline{1}$) from cow bile we choosed the method of Koppe and Becker¹⁰. Modificaton of this procedure yielded 60 s $\underline{1}$ from two litres of cow bile (the purity of the isolated cholic acid ($\underline{1}$) was identical with an authentic sample¹¹). Treatment of $\underline{1}$ with MeOH/AcOC1 (catalytical amount) (25 h, 55 °C) gave the methylester $\underline{2}$ (94 %), which was transformed to $\underline{3}^{12}$) in 79 % yield (three steps)¹³.

Treatment of $\underline{3}$ with a slight exess of N,N-carbonyldiimidazole in THF (0.18 M concentration of $\underline{3}$, 5 h at 25 °C) led to imidazole $\underline{3a}^{14}$, which was in situ irradiated in 0.033 M tetrahydrofuran solution with a low pressure mercury lamp (Hanau, TNN 15/32) (Iwasaki method¹⁵⁾) to give after chromatography on silica gel a 69 % yield of $\underline{4}^{16}$. Ozonolysis of $\underline{4}$ in CH₂Cl₂ (15 min at -78 °C) followed by treatment with Zn/HCOOH afforded, after silica chromatography, 73 % of 5 β -pregnane-3,20-dione ($\underline{5}$), whose

The conversion of $\underline{5}$ (by bromination followed by dehydrobromination) into the very important female sex hormone progesterone is well known¹⁸⁾.

 3α -Hydroxy-5 β -pregnan-20-one (<u>11</u>) could be obtained from cholic acid (<u>1</u>) in a similar way.

Transformation of $\underline{1}$ into lithocholic acid ($\underline{7}$) starts with selective acylation and oxidation to $\underline{6}$ (95 % overall). $\underline{7}$ was obtained from $\underline{6}$ by the modified Wolff-Kishner reduction¹⁹⁾ (91 % yield).

Treatment of $\underline{7}$ with one equivalent of N,N-carbonyldiimidazole in THF (0.15 M concentration of $\underline{7}$, 5 h at 25 °C) and irradiation of the imidazole $\underline{7a}$ as described above (see preparation of $\underline{4}$) yielded after silica gel chromatography 40 % 3 α -hydroxy-20-methylene-5 β -pregnane ($\underline{9}$)²⁰⁾, which was transformed into the desired 3 α -hydroxy--5 β -pregnan-20-one ($\underline{11}$)²¹⁾ via ozonolysis (yield 70 %).

Improved yields can be obtained by protection of the 3α -hydroxy-function by the t-butyl--dimethylsilyl group²²⁾. It is very easy to introduce and nearly quantitatively removable. The stability of the silyl ether during the photochemically side chain degradation is essential.

So, lithocholic acid ($\underline{1}$) was treated with TBDMSC1 (2.7 equivalent) and diethylamine in CH₂Cl₂ (24 h at 25 °C). Refluxing the raw material with equivalent KOH in ethanol for 1 h gave an 88 % overall yield of $\underline{8}^{23}$. The side chain degradation of $\underline{8}$ via $\underline{8a}$ yielded 76 % $\underline{10}^{24}$. Ozonolysis of $\underline{10}$ in CH₂Cl₂ at -78 °C (the ozonide was decomposed with zinc dust and acetic acid) and treatment with tetrabutylammonium fluoride in THF afforded, after silica gel chromatography, 89 % of 3 α -hydroxy-5 β -pregnan-20-one ($\underline{11}$)²¹⁾.

Acknowledgement: We thank Dr. Jan Runsink for the NMR spectra.

References and notes:

- a) L.Gyermek; Proc. Soc. Exp. Biol. Med. <u>125</u> (1967), 1058
 b) L.Gyermek, J.Iriarte, P.Crabbé; J.Med.Chem. 11 (1968), 117
- 2) G.Gonzalez-fiariscal, A.Fernandez-Guasti, C.Beyer; Neuroendocrinology 34 (1982), 357
- 3) C.R.Craig, J.R.Deason; Arch.int.Pharmacodyn. 172 (1968), 366
- 4) a) Can. Pats. 370,634 (Butenandt)
 - b) U.S. Pats. 2,156,275 (Butenandt)
- 5) W. Hoehn, H.Mason; J.Am.Chem.Soc. 62 (1940), 569
- 6) a) B.A.Koechlin, T.E.Kritchevsky, T.F.Gallagher; J.Biol.Chem. <u>184</u> (1950), 393
 b) M.Fetizon, F.J.Kakis, V.Ignatiadou-Ragoussis; J.Org.Chem. <u>38</u> (1973), 4308
- 7) a) M.G.Combe, H.B.Henbest, W.R.Jackson; J.Chem.Soc.(C) <u>22</u> (1967), 2467
 b) G.Bach, J.Capitaine, Ch.R.Engel; Can.J.Chem. 46 (1968), 733

- c) G.Kruger; U.S. 3,647,829 (1972);
- d) N.Tsuji, J.Susuki, M.Shiota, I.Takahashi, J.Org.Chem. 45 (1980), 2729
- e) E.D'Incan, A.Loupy, A.Restelli, J.Seyden-Penne, P.Viout; Tetrahedron <u>38</u> (1982) 1755
- 8) D.Onken and D.Onken, Die Pharmazie 35 (1980) 193
- 9) R.E.Marker, R.B.Wagner, P.R.Ushafer, E.L.Wittbecker, D.P.J.Goldsmith, C.H.Ruof; J.Am.Chem.Soc. 69 (1947) 2167
- 10) L.Koppe, M.Becker; Ger. (East) 79481 (1971)
- 11) Fluka Feinchemikalien GmbH, Neu-Ulm
- 12) compound $\underline{3}$, m.p.=181-2°C; α_D^{25} =+26,8°(CHCl₃,c=0.99);¹H-NMR (CDCl₃): δ /ppm=0.61(s,3H, C-18 CH₃);0.87(d,3H,C-21 CH₃);0.91(s,3H,C-19 CH₃);3.91(s,4H,-O-CH₂-CH₂-O); IR (KBr) cm⁻¹ 3220(v_{st},C-00H);2860(v_{st},O-CH₂);1725(v_{st},C=0);1095(v_{stas},C-O-C);945(v_{st},C-OC)
- 13) H.B.Kagan, J.Jacques; Bull.Soc.Chim.France 1957, 699
- 14) H.A.Staab, M.Lüking, F.H.Dürr; Chem.Ber. 95 (1962) 1275
- 15) Shigeo Iwasaki; Helv.Chim.Acta <u>59</u> (1976) 2753
- 16) compound $\underline{4}$, colourless oil; α_D^{25} =+19.0° (CHCl₃,c=1.262); ¹H-NMR (CDCl₃): δ /ppm=0.53(s, 3H,C-18 CH₃);0.93(s,3H,C-19 CH₃);1.72(s,3H,C-21 CH₃);3.92(s,4H,-0-CH₂-CH₂-O-);4.69 and 4.82(2s,2H,C-20 CH₂)
- 17) Sigma Chemie GmbH, München
- 18) a) A.Butenandt, J.Schmidt; Chem.Ber. <u>67</u> (1934), 1901; b) F.Johnson, G.T.Newbold,
 F.S.Spring; J.Chem.Soc. 1954, 1302; c) U.Halpern; U.S. 3,475,464 (1969)
- 19) Huang-Minlon; J.Am.Chem.Soc. 71 (1949), 3301
- 20) compound 9, m.p.=143-45°C; α_D^{25} =+16.9° (CHCl₃,c=1.018) ¹H-NMR (CDCl₃): δ /ppm=0.53(s, 3H,C-18 CH₃);0.94(s,3H,C-19 CH₃);1.77(s,3H,C-21 CH₃);4.73 and 4.87(2s,2H,C-20 =CH₂); IR (KBr) cm⁻¹ 3300(v_{st},O-H);1030(v_{st},CH-OH);880(v_{oop},C=CH₂)
- 21) phyical constants and spectra were identical with those of an authentic sample (Sigma GmbH, Nünchen)
- 22) E.J.Corey, A.Venkateswarlu; J.Am.Chem.Soc. <u>94</u> (1972), 6190
- 23) compound $\underline{8}$, m.p.=196-98°C; α_D^{25} =+31.4° (CHCl₃,c=0.494); ¹H-NMR (CDCl₃): δ /ppm=0.07 (s,6H,Si-CH₃);0.64(s,3H,C-18 CH₃);0.92(s,15H,C-19 CH₃,C-21 CH₃ and Si-t-buty]);3.50 (br.s,1H,C-3 BH); IR (KBr) cm⁻¹ 1700(v_{st} ,C=0);1245(δ_{sy} ,Si-CH₃);830,770(γ ,SiCH₃) 24) compound $\underline{10}$, m.p.=83-84°C; α_D^{25} =+22.7° (CHCl₃,c=1.008) H-NMR (CDCl₃): δ /ppm=0.06(s,
- 24) compound $\underline{10}$, m.p.=83-84[°]C; α_D^{23} =+22.7[°] (CHCl₃,c=1.008) 'H-NMR (CDCl₃): δ /ppm=0.06(s, 6H,Si-CH₃);0.55(s,3H,C-18 CH₃);0.91(s,12H,C-19 CH₃,Si-t-buty1);1.25(s,3H,C-21 CH₃); 3.55(br.s.,1H,C-3 β H);4.71 and 4.84(s,2H,C-20 =CH₂); IR (CHCl₃ cm⁻¹ 1640(ν_{st} ,C=C); 1250(ν_{sv} ,Si-CH₃);835,775(ν ,Si-CH₃).

(Received in Germany 5 December 1983)